Central Limit Theorem for Random Partitions under the Plancherel Measure

نویسندگان

  • L. V. Bogachev
  • Z. G. Su
چکیده

A partition of a natural number n is any integer sequence λ = (λ1, λ2, . . . ) such that λ1 ≥ λ2 ≥ · · · ≥ 0 and λ1 + λ2 + · · · = n (notation: λ ⊢ n). In particular, λ1 = max{λi ∈ λ}. Every partition λ ⊢ n can be represented geometrically by a planar shape called the Young diagram, consisting of n unit cell arranged in consecutive columns, containing λ1, λ2, . . . cells, respectively. On the set Pn := {λ ⊢ n} of all partitions of a given n, consider the Plancherel measure Pn(λ) := dλ n! , λ ∈ Pn, (1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian fluctuations of Young diagrams under the Plancherel measure

We obtain the central limit theorem for fluctuations of Young diagrams around their limit shape in the bulk of the ‘spectrum’ of partitions lwn2N (under the Plancherel measure), thus settling a long-standing problem posed by Logan & Shepp. Namely, under normalization growing like ffiffiffiffiffiffiffiffiffiffi log n p , the corresponding random process in the bulk is shown to converge, in the s...

متن کامل

Stein's Method and Plancherel Measure of the Symmetric Group

We initiate a Stein’s method approach to the study of the Plancherel measure of the symmetric group. A new proof of Kerov’s central limit theorem for character ratios of random representations of the symmetric group on transpositions is obtained; the proof gives an error term. The construction of an exchangeable pair needed for applying Stein’s method arises from the theory of harmonic function...

متن کامل

Stein's Method and Plancherel Measure of the Symmetric Group Running Head: Stein's Method and Plancherel Measure

X iv :m at h/ 03 05 42 3v 3 [ m at h. R T ] 1 1 N ov 2 00 3 Stein’s Method and Plancherel Measure of the Symmetric Group Running head: Stein’s Method and Plancherel Measure By Jason Fulman University of Pittsburgh Department of Mathematics 301 Thackeray Hall Pittsburgh, PA 15260 Email: [email protected] Abstract: We initiate a Stein’s method approach to the study of the Plancherel measure of...

متن کامل

Jack Deformations of Plancherel Measures and Traceless Gaussian Random Matrices

We study random partitions λ = (λ1, λ2, . . . , λd) of n whose length is not bigger than a fixed number d. Suppose a random partition λ is distributed according to the Jack measure, which is a deformation of the Plancherel measure with a positive parameter α > 0. We prove that for all α > 0, in the limit as n → ∞, the joint distribution of scaled λ1, . . . , λd converges to the joint distributi...

متن کامل

Discrete orthogonal polynomial ensembles and the Plancherel measure

We consider discrete orthogonal polynomial ensembles which are discrete analogues of the orthogonal polynomial ensembles in random matrix theory. These ensembles occur in certain problems in combinatorial probability and can be thought of as probability measures on partitions. The Meixner ensemble is related to a two-dimensional directed growth model, and the Charlier ensemble is related to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006